Remote API

September, 2018

Overview

The Remote API is a network wrapper around the Plug-in API. The Remote API Plug-in acts as the server
to clients that may reside on the same computer or on different computers. The Remote API is robust
enough to include the full functionality of the Plug-in API, allowing users to develop network based or
out-of-process SIMDIS plug-ins.

Plug-in
The Remote API Server is a plugin that is compatible with SIMDIS 10, Plot-XY, and SIMDIS 9. Selecting
the Remote API Server from the Plug-in menu displays the dialog below.

| =17 Remote API Server Controls O 0 X |

Interface: Any Al -

Discovery Port: |8482 = |

Connection: Closed
Start Stop

Load From File... | Detailed Status...

Figure 1: Remote API Server User Interface

The user specifies a Discovery Port and Interface using the GUI. This is used as a well-known address on
which Remote API client applications can connect. Multiple clients can connect to the same server. Two
additional ports are created automatically to service commands from the plug-in and reply with
responses from SIMDIS. This is covered in detail in the Architecture section below.

Click the “Start” button to bind to the port indicated in the GUI. Clients will be able to connect at this
point. Clicking “Stop” will close the socket on the Discovery Port and close all active connections. Note
that the GUI does not need to remain open while clients communicate with the plug-in. The plug-in can
be automatically started using command line options.

The Connection field is updated to indicate the current state of the server. Connection states include:

Close Server is not currently active. No clients are connected.
Open Server is currently active and bound to the discovery port. Clients may be connected.
Invalid Server was unable to bind to the port provided.

Remote API Files are binary files containing protobuf messages from a client. The format is a series of
serialized binary protobuf messages, preceded by a two-byte unsigned short integer of the message size.
These messages can be captured per-client using the Detailed Status GUI, and can be loaded using the
main window’s “Load From File” button. The commands will be executed in sequence as though from a
new client.

The “Detailed Status” button brings up the server status GUI:

&l Remote API Status oo x
I IP Host Description Last R Rate Message Missed C-Port R-Port Responses Logging
1 122502041 grm4200mobile Python Client 0.0 0.0 36 0 53660 53662 Enabled Disabled

1 client connected Disconnect Log... Stop Logging

Figure 2: Remote API Status GUI

The window shows detailed status for each connected client. The user can enable and disable logging

’

of messages to a binary file via the “Log..” and “Stop Logging” buttons. Clients can be forcibly

disconnected via the “Disconnect” button. The columns include:

ID Serial identifier assigned by the plug-in to the client.

IP IP Address of the client, as supplied by the client itself in the discovery message.
Host Hostname of the client, as supplied by the client itself in the discovery message.
Description Text description of client, as supplied by client itself in the discovery message.
Last RX Seconds elapsed since the last received message.

Rate Calculated number of messages per second from the client.

Messages Most recently received sequence ID from the client.

Missed Number of commands detected to have missed from the client.

C-Port Dedicated command port on which the client sends Remote APl commands.
R-Port Dedicated response port to reply to client with SIMDIS return values.

Responses Indicates whether responses are enabled or disabled. Clients can opt to omit
responses. Note that omitting responses does not close the response socket.
Logging Indicates whether logging is currently enabled for the client connection.

The following command line options are supported by the plug-in:

-RemoteAPIl:autoStart Start Remote API Server.
-RemoteAPl:iface <arg> Interface address for Remote API network sockets.
-RemoteAPI:port <arg> Port for Remote API Discovery Service.

Architecture
The Remote APl is a client/server architecture, with the Remote API Plug-in acting as a server to multiple
clients. The message communication flow diagram for a single client is shown below:

Remote API

SIMDIS] Plug-in
Plug-in API

Responses

Figure 3: Remote API Flow Chart

The clients issue commands to the server and receive responses from the server. A client is analogous
to a Plug-in and may be written in any language, including but not limited to C++, MATLAB (using MEX),
and Python.

Remote API clients connect to a Discovery port opened by the plug-in and request a command and
response port from the Remote API Plug-in. Additional metadata is sent at this time, including a
description of the client. The plug-in then opens two new ports to communicate with the new client and
replies with the port values. The client is then responsible for connecting to these ports. Clients always
connect to the Remote API server, and the Remote API server plug-in always binds to ports to service
clients. The underlying socket technology used is ZeroMQ. A network topology diagram is below:

Discovery Service Remote APl Commands
Client Client Client
REQ (connect) PUSH (connect) PULL (connect)

Connection.Response

Connection.Command RemoteApi.Command RemoteApi.Response
REP (bind) PULL (bind) PUSH (bind)
Server Server Server

Figure 4: Remote APl Network Topology

The communication between the server and the client is divided into the Message Format and the
Communication Protocol. The Message Format is definition of the messages between the server and

the client while the Communication Protocol is how the messages are passed between the server and
the client.

Message Format
The Remote APl uses protobuf messages to define the messages between the server and the client.
Details on protobuf messages are at: https://developers.google.com/protocol-buffers/ . The top level

messages are defined in RemoteApi.proto. Messages are divided into Commands which are sent from
the client to the server and Responses which go from the server to the client. Every command sent to
the server will generate one and only one response. A command can only request one piece of
information. Another words only one “has_" should be valid for a command message.

The layout of the Remote APl messages is modeled after the Plug-in API. The Remote API follows the
same hierarchical structure as the Plug-in APIl. For details on most of the messages in the Remote API
refer to the Plug-in APl documentation at:

https://simdis.nrl.navy.mil/codepages/doc/PluginAPI/PluginClient/doc/html/index.html

Where the name of the Remote APl message deviates from the expected Plug-in APl name, the
documentation in the protobuf file will reference the Plug-in APl name so that searching the protobuf
files with the Plug-in APl name will locate the appropriate information.

User-supplied Unique ID

Many of the Create messages and Add messages allow the client to specify the unique ID. This allows
the client to add data to the newly created entity without having to wait for the response to the
Create/Add message. It is the client’s responsibility to make sure the ID is unique. If the client provides
a non-unique ID, the Remote Server will assign a unique ID. All the Create/Add messages that support a
user-supplied unique ID have an optional field called “suppliedld”. The field is an unsigned 32-bit field.
Setting the field to a non-zero value tells the Remote Server that the client is specifying the unique ID.
Entities not created by the client or created by the client with a non-unique ID will have ID values
greater than an unsigned 32-bit value. Once a client specifies a unique ID for an entity the client is not
obligated to specify a unique ID of other entities. A client can simultaneously create entities with and
without supplied unique IDs.

Communication Protocol

It is necessary to control the flow of messages between the server and the client. A client can either use
a Sequential approach or a Streaming approach. In the Sequential approach, a client issues a command
and waits for the response. The command must be processed by the main thread of the host
application (SIMDIS, Plot-XY) which results in a throughput rate of 50 messages or less per second. In
the Streaming approach the client issues multiple commands without waiting for the response to the
previous command. The client keeps track of what responses it is waiting for and handles the responses
with they eventually arrive. The Streaming approach can have throughput rate of 1000s of messages
per second. The client can pick either approach or mix them together. The message rate will be

https://developers.google.com/protocol-buffers/
https://simdis.nrl.navy.mil/codepages/doc/PluginAPI/PluginClient/doc/html/index.html

influenced by the CPU load of the host application, the speed of the network, the amount of network
traffic, the type of messages and the implementation of the client.

Sequential Streaming

Complexity Relatively simple More complex

Throughput | About 50 messages / second | Thousands of messages / second

Table 1: Sequential versus Streaming

When the client sends a message to the server the library returns a Sequence Number that is used to
identify the response. The client periodically asks the library if the response with a given Sequence
Number has arrived. When the response arrives, the client can than parse the response for any
necessary information. The client should use the Sequence Number as an opaque value and should not
attempt to interpret the value.

It is possible for a client to turn off all responses. The returning of responses is controlled by the
protobuf field of RemoteAPIl.Configuration.Command.responseSetting. Setting the field to
NO_RESPONSES and sending it to the server will turn off all responses include the response to the
message turning off responses. Setting the field to ALL_RESPONSES and sending the message to the
server will turn on all responses starting with the response to the message turning on responses. Before
sending the ALL_RESPONSES message the client MUST flush all pending responses.

A client can control the timeout used to declare a connect invalid. An invalid connection is defined as a
connection without any messages for the duration of the timeout. The timeout is defined in seconds
and defaults to 300 seconds. The server will immediately close a connection that becomes invalid. A
timeout value of 0 means no timeout and the connection will never be declared invalid. The client can
set the timeout using the protobuf field of RemoteAPI.Configuration.Command.

Differences
Some notable differences between the Remote API and the Plug-in API interfaces include:

o All Remote API messages return either a ReturnCodeOnlyResponse message or the requested
information (when responses are enabled).
0 Asuccessful message returns either RETURN_OK or the requested information.
0 An unsuccessful message will always return a ReturnCodeOnlyResponse message with
the appropriate fields set.
e Most names for the Remote API structs and enums are based off the Plug-in APl names without
the PI prefix.
e Where appropriate some Plug-in API commands have been expanded to support multiple
points. Supporting multiple points will reduce the number of network calls. If one of the points

is invalid than processing of the command will terminate and the server will return an error
message indicating the point in error. All points before the error will have been processed.
Examples include PIPlotXY::getPairOption and PIPlotXY::setPairOption.

e Instead of using the term “Object” the Remote API uses the term “Entity”

o AllID types are now uint64.

e GetColor and GetStatus support a time range with a flag for initial condition. If the initial
condition flag is set and there is no data point at the requested start time, then the routine will
calculate the last value before the requested time range and return the value as the first value
with the start time of the range. If no value exists before the requested start time than no initial
value is returned.

e GetGeneric supports a time range with a flag for including the time span in the calculation.
The flag set to false means only compare the time of the Generic data against the requested
time range The flag set to true means compare the time range of the Generic data against the
requested time range; any overlap means include the Generic data. For a requested time
range of 10 seconds to 20 seconds the following tables show different examples:

Time, Expire Time | Flag = True | Flag = False
1,-1 Include Exclude
1,3 Exclude Exclude
1,11 Include Exclude
1, 30 Include Exclude
11,1 Include Include
11, -1 Include Include
21,1 Exclude Exclude
21, -1 Exclude Exclude

e For data access, Tables now follow the pattern set by other Entity types with a GetRows
message. Data access via lterators and functors is not supported by the Remote API.
e Individual retrieval and setting of data have been replaced by single methods that that handle all
relevant data. Examples include:
0 All the information on a table can be retrieved by the single call of GetTableHeader. The
individual calls for getting and setting table information will not be implemented.
O The message getColumns is used to get all the column header information for all the
columns. Individual access of column information is not supported by the Remote API.

Support Requests

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Support requests are handled on the SIMDIS Help Desk at https://simdis.nrl.navy.mil/jira. Support is
provided on a best effort basis, and support is minimal at best for individuals and organizations that are

not active sponsors.

https://simdis.nrl.navy.mil/jira

	Overview
	Plug-in
	Architecture
	Message Format
	User-supplied Unique ID
	Communication Protocol
	Differences
	Support Requests

