
SIMDIS Custom Toolbar Plug-in

1 Requirements

• SIMDIS or Plot-XY and the Custom Toolbar Plug-in, of the same compiler version. For

example, for the 64-bit Windows VC-14.2 version:

– SIMDIS/bin/amd64-nt/simdis10.exe or SIMDIS/bin/amd64-nt/PlotXY.exe

– SIMDIS/plugins/piCustomToolbar win64 vc-14.2.dll

• An XML file providing the layout of a custom toolbar. See section 3.

2 Custom Toolbar Plug-in Information

The Custom Toolbar Plug-in for SIMDIS/Plot-XY is written using the C++ SIMDIS Plug-in API

distributed by the Tactical Electronic Warfare Division at the U.S. Naval Research Laboratory.

The Plug-in API allows the plug-in to seamlessly integrate with SIMDIS/Plot-XY and provide

specialized utility to the end-user above and beyond the capabilities distributed with SIMDIS.

The Custom Toolbar Plug-in provides a means for end-users to customize the user interface of

the application by hiding the standard SIMDIS/Plot-XY toolbars and/or creating new toolbars.

User-created toolbars are defined in XML files and can host a number of custom buttons with

various functions within the application.

Comments, issues, or feature requests regarding the Custom Toolbar Plug-in can be logged to

the SIMDIS Help Desk.

3 Configuring the Toolbar File

You will need to generate an XML (.xml) file to create a custom toolbar. Like all XML files,

configuration values are surrounded by open tags (e.g. “<tag>”) and close tags (e.g. “</tag>”).

You can write comments in your XML files using a pair of comment tags (“<!--” followed by

“-->” to end the comment block). Custom Toolbar config files must be contained within a pair of

customToolbar tags to be read by the plug-in:

1

https://simdis.nrl.navy.mil
https://simdis.nrl.navy.mil/jira.aspx

<-- This is a comment before starting the toolbar document -->

<customToolbar>

<!--

This is a multi-line comment inside the toolbar configuration.

The comment won’t end until the end tag is found.

-->

</customToolbar>

3.1 Document Options

There is one option that can be applied to SIMDIS/Plot-XY, separate from your added toolbars:

• hideStandardToolbars: Omitting this option, or providing a value of “0” indicates that the

standard toolbars shall not be hidden. Any other value will hide the standard toolbars before

adding your custom toolbars.

All document options must be enclosed within a pair of options tags:

<customToolbar>

<options>

<!-- By providing a value of ‘‘1’’ here, we hide the standard toolbars -->

<hideStandardToolbars>1</hideStandardToolbars>

</options>

</customToolbar>

4 Creating a Custom Toolbar

You can define multiple custom toolbars in a single document. The definition of each toolbar is

placed within a pair of toolbar tags:

<customToolbar>

<!-- All toolbars must be inside the customToolbar tags -->

<toolbar>

<!-- This is a comment inside a toolbar -->

</toolbar>

</customToolbar>

4.1 Title

You can assign a Title to your toolbar, which can be used to refer to it in some GUIs:

<toolbar>

<title>Custom Toolbar 1</title>

</toolbar>

2

4.2 Options

There are several options that can be applied to your toolbar:

• iconAndTextMode: Customizes the appearance of buttons and menus on the toolbar. Sup-

ported values are:

– IconAndText: Each button or menu shows the assigned icon and text

– IconOnly: Each button or menu shows only the assigned icon

– TextOnly: Each button or menu shows only the assigned text

• iconWidth: Sets the base width of each button or menu on the toolbar.

• iconHeight: Sets the base height of the toolbar.

All toolbar options must be enclosed within a pair of options tags:

<toolbar>

<options>

<!-- Show both the icon and text of all buttons -->

<iconAndTextMode>IconAndText</iconAndTextMode>

<!-- Dimensions of the toolbar in pixels. Match the default size of 26x26 pixels. -->

<iconWidth>26</iconWidth>

<iconHeight>26</iconHeight>

</options>

</toolbar>

4.3 Actions

You can add actions to your toolbar, to force some operations to occur when the toolbar is created.

The full list of action names can be found in the Hot Keys dialog via Tools > Hot Keys. All

actions must be enclosed within a pair of action tags:

<toolbar>

<!-- Force the Time Editor GUI to open when the toolbar is loaded -->

<action>Time Editor</action>

<!-- Full-screen the application when the toolbar is loaded -->

<action>Full Screen</action>

</toolbar>

4.4 Buttons

Buttons are the main element of a custom toolbar and can trigger various operations within

SIMDIS/Plot-XY. Configuration options for a button are all written inside the button tags. There

3

are multiple types of button, and the button’s type is specified by the opening tag. All button

types share several configuration options:

• text: Specifies the label shown on the button (in IconAndText or TextOnly modes).

• tooltip: Sets the hint text to display when the user’s mouse hovers over the button.

• iconData: Sets the button’s icon to one of several built-in icons, listed in Appendix A.

• iconFile: Sets the button’s icon to one loaded from the specified file location.

NOTE: Only the final iconData or iconFile option on a button will be applied.

<toolbar>

<button type="Action">

<text>Toggle All</text>

<tooltip>Toggle All Bars</tooltip>

<!-- This iconData is not applied, because an iconFile tag comes afterwards -->

<iconData>TreeExpand</iconData>

<iconFile>$(SIMDIS_DIR)/data/icons/circle.png</iconFile>

</button>

</toolbar>

4.4.1 Action Buttons

Buttons of the “Action” type can be used to trigger an action to occur in SIMDIS/Plot-XY. The

full list of action names can be found in the Hot Keys dialog via Tools > Hot Keys. The name

of the action to trigger must be inside actionName tags:

<toolbar>

<button type="Action">

<text>Toggle All</text>

<tooltip>Toggle All Bars</tooltip>

<iconData>TreeExpand</iconData>

<!-- This action will toggle the display of the standard SIMDIS/Plot-XY toolbars -->

<actionName>Toggle All Bars</actionName>

</button>

</toolbar>

Action buttons linked to actions that have a toggle state will display the current toggle state of

their action. See Figure 1.

4

Figure 1: Button linked to the “Toggle All Bars” action, before and after activation.

4.4.2 Category Filter Buttons

Buttons of the “CategoryFilter” type can be used to show or hide entities based on their category

data, using the Draw preference rule. Category Filter Buttons have several unique option tags:

Option Tag Description Valid Values

categoryName Name of the category to check when

filtering entities.

Any text string.

categoryValue Category Data value to match when

filtering entities.

Any text string.

entityType Entity type(s) to which the Draw

rule is applied. Defaults to PBGLDRC

if not specified.

Valid entity type values:

P=Platform, B=Beam, G=Gate,

L=Laser, D=LOB(Detection),

R=Projector, and C=Custom

Rendering.

nameExpression Regular expression, where entities

with non-matching names will not

be filtered. Defaults to “.*” if not

specified.

Any valid regular expression.

categoryFilters A more complex set of categoryFil-

ters to which the Draw rule will

be applied. The “categoryFilters”

value from a SIMDIS preference rule

would be entered here.

A Category Data Filter string from

a SIMDIS preference rule, for exam-

ple Affinity(1)~Friendly(1).

initialState Visible state to apply to matching

entities when the toolbar is loaded.

“True” or “False”.

NOTES:

• If both the categoryName and categoryValue options are set, the categoryFilters option

will be ignored.

• For an explanation of SIMDIS Category Data Filter strings, see the Prefs Tool section of

the SIMDIS User Manual.

All Category Filter Button options must still be written in the “button” tag:

5

<toolbar>

<button type="CategoryFilter">

<text>Friendlies</text>

<!-- This filter shows/hides all entities that have a ‘Friendly’ Affinity value -->

<categoryName>Affinity</categoryName>

<categoryValue>Friendly</categoryValue>

<iconData>Gear</iconData>

</button>

<button type="CategoryFilter">

<text>Alphas</text>

<!--

With no categoryName/categoryValue or categoryFilters options, this filter

applies to all entities that match the name expression

-->

<!-- Apply this filter to entities with "Star" in their names -->

<nameExpression>Star</nameExpression>

</button>

<button type="CategoryFilter">

<text>Hostile Platforms</text>

<!-- Apply this filter only to Platforms -->

<entityType>P</entityType>

<!--

This filter string matches entities that have an Affinity value,

if that value is Hostile

-->

<categoryFilters>Affinity(1)~Hostile(1)</categoryFilters>

</button>

</toolbar>

When the button is pushed in, entities matching the configured filter are shown. When the button

is raised, the entities will be hidden. See Figure 2.

Figure 2: Category Filter Button, before and after activation.

4.4.3 DISCN Configuration Buttons

Buttons of the “DiscnConfig” type load configuration information from either a .asi or .discn

file. These are useful for generating multiple display configurations. Note that only the following

commands are processed in the loaded file:

6

Command Description

GOGFile Loads a GOG(.gog) file for display in the scenario.

ViewFile Loads a View(.svml) file to configure the view.

RuleFile Loads a Pref Rule(.rul) file to apply rules to entities in the scenario.

ITConfigFile Loads a Map(.earth) file to configure the display of the globe.

Here is a minimal example ASI file, that loads a GOG file named “States.gog”:

SIMDIS ASCII Scenario Input (ASI) File Format

Version 21

GOGFile "States.gog"

The name of the file to load must be contained in discnFile tags:

<toolbar>

<button type="DiscnConfig">

<text>GOG</text>

<tooltip>Load the States.gog file via an ASI file</tooltip>

<discnFile>States.asi</discnFile>

</button>

</toolbar>

NOTE: If triggering a DISCN Configuration Button causes an error (e.g. the file doesn’t exist),

it will be disabled until the toolbar is reloaded. You can check the application console for more

information about the error.

4.4.4 Apply Rules Buttons

Buttons of the “Apply Rules” type apply one or more Preference Rules to all matching entities in

the scenario. Apply Rules Buttons have two unique options:

• rule: Preference Rule to apply. It will be added to SIMDIS using the Plug-in API com-

mand PISIMDIS::addPrefRule(). The text should be escaped for XML. This option can be

repeated for multiple rules on one button.

• version: Version for loading the rules. If omitted, then version 4 is presumed.

7

<toolbar>

<button type="ApplyRules">

<text>Rules</text>

<tooltip>Apply some Preference Rules to the entities</tooltip>

<version>4</version>

<!-- This rule hides all "Friendly" entities, similar to the CategoryFilter example above -->

<rule>

ruleName=Draw ruleValue="no" nameExpression=".*" entityType=PBGLD

categoryFilters="Affinity(1)~Friendly(1)"

</rule>

</button>

</toolbar>

NOTE: Unlike Category Filter Buttons, Apply Rules Buttons are do not have an “undo” state.

Clicking the button a second time will re-apply the same rule.

4.5 Separators

Separators are small vertical bars, and can be used to group buttons on your toolbars. A separator

is added using a single “separator” tag:

<toolbar>

<button type="Action">

<text>Button 1</text>

<actionName>Toggle All Bars</actionName>

</button>

<!-- Separator is created by a single tag, note the ‘/’ before the ending ‘>’ -->

<separator/>

<button>

<text>Button 2</text>

<actionName>Open</actionName>

</button>

</toolbar>

Figure 3: Two buttons, with a separator between.

4.6 Menus

Menus allow multiple buttons and separators to be grouped together on the toolbar, only displayed

when the menu is opened. Menus support the text, tooltip, iconData, and iconFile options

much the same as buttons do. Those options and any elements you want inside the menu must all

be defined within the menu tags:

8

<toolbar>

<menu>

<text>Menu</text>

<iconData>Gear</iconData>

<!-- Define the first button inside the menu -->

<button type="Action">

<text>Time Editor</text>

<iconData>Clock</iconData>

<actionName>Time Editor</actionName>

</button>

<separator/>

<button type="Action">

<text>Toggle Labels/text>

<iconData>IncreaseFont</iconData>

<actionName>Platform Labels</actionName>

</button>

</menu>

</toolbar>

Figure 4: An opened menu, with two buttons and a separator inside.

9

A Built-in Icons

The following icons are available for use by Custom Toolbar XML files:

Icon iconData Name Description

Add The addition sign (a plus).

ArrowDown An arrow pointing down.

Camera A tool used to capture video.

Clock A round, analog clock.

Edit A pencil.

Export A dashed arrow, pointing up.

Gear A round cog, with teeth.

Help A question mark on a book.

IncreaseFont A large, capital letter ‘A’.

Load Typical icon for opening a file.

TapeMeasure A tool used to measure distance.

Texas The state with surrounding area.

TreeExpand Two folders connected by lines with a ‘+/-’.

NOTE: If the iconFile option is used but the listed icon file cannot be found, then an error icon

will be used instead:

10

	Requirements
	Custom Toolbar Plug-in Information
	Configuring the Toolbar File
	Document Options

	Creating a Custom Toolbar
	Title
	Options
	Actions
	Buttons
	Action Buttons
	Category Filter Buttons
	DISCN Configuration Buttons
	Apply Rules Buttons

	Separators
	Menus

	Built-in Icons

